
CORRELATION FUNCTIONS,
VECTORS AND HIGH-DIMENSIONAL VECTOR SPACES,

ORTHONORMAL BASIS VECTORS AND FOURIER SERIES

The fluctuation with time of a variable A about its mean value is
described by the function A( t ). The time-correlation function for the
variable is the classical ensemble average of the product of values of A( t ) at
times that differ by the interval t

C A (t) = < A( t + τ) A(τ) > (1)

= ∫ . . . ∫ dpdqρ(p ,q) A(p ,q;t + τ) A(p ,q:τ)

From a molecular dynamics simulation we obtain a time series of values of a
variable, such as a main-chain dihedral angle. The averaging of the product
A( t + τ) A(τ) to obtain C A (t) can be over the time series. We can view the
time series as a vector. The vector is defined by the sequence of values of
the variable A at the sample points of the simulation. The dimension of the
vector is equal to the number of sample points. With this picture, the
correlation function C A (t) is the appropriately normalized inner product (or
dot product) of the two vectors, A( t + τ) and A(τ),

C A (t) =
C norm

1_ _____ (A( t + τ), A(τ)) (2)

The vectors A( t + τ) and A(τ) are equal-size samples of the signal A( t ), with
the start of the sequence defining the vector A( t + τ) displaced by t from the
start of A(τ).

The inner product (A( t + τ), A(τ)) is proportional to the projection of
the vector A( t + τ) on A(τ). For small t the vectors are near parallel and the
projection is large, approximately equal to the squared magnitude of A(τ).
For large t, if the fluctuation in signal is high-frequency random noise, the
vectors are orthogonal and the projection and C A (t) will be zero. If the
signal contains periodic components in addition to random noise, the vectors
will oscillate about the perpendicular and the projection and C A (t) will be
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periodic.

The following develops the above geometrical picture of the inner
product on a vector space by examining the two-dimensional case and
extending it to higher dimensions and to vector spaces of functions. The
notion of orthonormal basis vectors is introduced to flesh out the geometrical
picture and to show, within the geometrical picture, the relationship between
the inner product, the Fourier series expansion of a function, and the Fourier
transform of a function.

I. R2: a two-dimensional vector space.

A vector in two-dimensions is an ordered sequence of two numbers,

r = [x y] (3)

The inner product of two vectors is the number (scalar) obtained by
componentwise multiplication of the two sequences,

(r 1 , r 2 ) = x 1 x 2 + y 1 y 2 (4)

or by projection of one vector upon the other,

(r 1 , r 2 ) = r 1 r 2cos (θ) (4a)

where θ is the angle between the vectors. Equations (4) can be shown
equivalent by expressing cos (θ) in terms of the magnitudes of the three
sides of the triangle defined by the two vectors. The inner product or dot
product is also written as r 1

. r 2.

We introduce mutually orthogonal unit vectors (orthonormal basis
vectors), i and j,
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i = [ 1 0 ] (5)
j = [ 0 1 ]

We can write the vector r = [x y] as a sum of vectors,

r = xi + yj (6)

It is seen that x = (r , i) and y = (r , j ), i.e., the components of r are the
projections of r upon the unit basis vectors.

II. Rn: an n-dimensional vector space.

The extension from two to three dimensions is obvious and familiar.
The extension to more than three dimensions, where the vector space is a
hyperspace, may be less familiar but also should be obvious. We change
notation from that for two or three dimensions as used above to a notation
suitable to vectors with a larger number of components. In Rn as in R2 a
vector is a sequence of n numbers,

x = [x 1 x 2
. . . x n ] (7)

The inner product of two vectors is defined as for two dimensions, as the
componentwise product of the two sequences,

(x , y) =
i = 1
Σ
n

x i y i (8)

A sequence of orthonormal basis vectors for Rn is

e 1 = [ 1 0 . . . 0 ] (9)
e 2 = [ 0 1 . . . 0 ]

.

.

.

e n = [ 0 0 . . . 1 ]
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As for two dimensions, a vector x = [x 1 x 2
. . . x n ] can be expressed as a

sum of scaled basis vectors,

x =
i = 1
Σ
n

(x , e i ) e i (10)

where the inner product coefficients are the projections of the vector upon
the unit basis vectors.

The geometrical picture, e.g., of basis vectors, of the inner product, and
of projection, is for higher dimensions the same as for two or three
dimensions. The geometrical parallels serve as the basis for an intuitive
understanding of the properties of a hyperspace.

A signal sampled discretely, as in a molecular dynamics simulation, can
be represented as a vector in Rn , with the dimension n being the size of the
sample. The picture given for C A (t) in the first two paragraphs immediately
follows from the development in this subsection. If the first two paragraphs
were not clear on first reading, perhaps they should be reviewed now.

For a molecular dynamics simulation of a protein with N atoms, a
snapshot of the trajectory taken at a sample point, with values for 3N
coordinates and 3N velocities, can be viewed as a vector in a 3N-
dimensional hyperspace describing the conformation or as a vector in the
6N-dimensional phase space of statistical mechanics. As the system evolves
with time, the vector changes direction and magnitude. The trajectory
determined by the simulation is represented by a sequence of such vectors.
The vectors define a set of points in configuration or phase space. The
points will be clustered with varying density, but will be most dense about
one or several regions. Note that we are thinking here as though in two or
three dimensions. Although a 3N or 6N-dimensional vector space cannot be
visualized, we note again, that geometrical concepts extended from two and
three dimensions provide an intuitive and comfortable understanding of the
more complex systems.

III. L2 (a ,b): the infinite-dimensional vector space of functions square
integrable over the range a to b.
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The geometrical picture extends to vector spaces of well-behaved
functions and infinite sequences of functions.

The inner product is defined on L2 (a ,b) as

(f, g) = ∫
a

b
f (t) g(t)

_ ___
dt (11)

This expression is similar to the inner product in Rn , which is obtained by
componentwise multiplication of the vectors. To see this similarity,
consider the definition of an integral, where the integrand is divided into
small segments that are summed. In L2 (a ,b) as in Rn , the inner product is
related to the projection of the function f (t) upon the function g(t). The
expression and picture developed for C A (t) in the first two paragraphs holds
equally well for A( t + τ) and A(τ) being functions rather than discrete
sequences.

In L2 as in Rn , it should be possible to find a complete orthonormal
system of basis vectors, e n . Each basis vector in L2 will be itself a function,
which is different from but parallels the situation in Rn , a vector space of
ordered sequences, where each basis vector is itself an ordered sequence
[ 0 . . . 1 . . . 0 ]. As in Rn , a function can be expressed as a sum of
terms, the projection of the function upon each basis vector times the basis
vector,

f =
n = − ∞
Σ
∞

(f, e n ) e n (12)

The archetypal orthogonal expansion of this kind is the Fourier series, for
which the basis vectors are

e n (t) = ( 2π)− 1/2 e int − π < t < π (13)

(e n )− ∞
∞ is a complete orthonormal sequence in L2 (− π ,π). Thus we can

write for a real 2π-periodic function
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f(t) = ( 2π)− 1/2

n = − ∞
Σ
∞

c n e int n∈Z (14a)

c n = (f, e n ) (14b)

= ( 2π)− 1/2 ∫
− π

π
f(t) e− intdt

Each inner product coefficient c n is a number which gives the size of a
contribution of frequency n to the function f(t). That e int describes a
contribution of frequency n is apparent from the Euler formula

e int = cos (nt) + isin (nt) (15)

The Fourier transform is similar to the Fourier series expansion just
described. In the series expansion the indices n of the system of basis
functions are integers, ranging from − ∞ to ∞. Each basis function makes a
contribution of integer frequency n. For the Fourier transform, we allow the
"index" to be continuous, ranging now over the real numbers from − ∞ to ∞,
and we make a conforming change in notation, replacing the index n by the
variable ω. We also remove the restriction on the range of f(t). The
relevant vector space is L2 (− ∞ ,∞).

The Fourier transform of f(t) is

f̂(ω) = ( 2π)− 1/2 ∫
− ∞

∞
f(t) e− iω tdt ω ∈R (16)

The original function f(t) is recovered from f̂(ω) by the inverse Fourier
transform

f(t) = ( 2π)− 1/2 ∫
− ∞

∞
f̂(ω) e iω tdω (17)

The transform f̂(ω) is a vector space inner product, projecting the function
f(t) on the function ( 2π)− 1/2 e iω t . The transform is similar to the
coefficients c n of the Fourier series expansion, except the index has become
continuous and can take any value. The inverse transform, returning the
function, is similar to the summation of the Fourier series.
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Taking the Fourier transform of a function f(t) is a mapping from the t to
the ω domain, i.e., from the time to the frequency domain. The Fourier
transform changes the basis from a function of time to a function of
frequency.
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references. A good book to find out what numerical methods are available
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