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TIME CORRELATION FUNCTIONS.

We think of variables as correlated if when one variable has a large value,
the other also has a large value, and if this parallel behavior persists for some
period of time. Intuitively, we understand that after some longer period of
time the correlation will vanish. A formal expression of the correlation
between two variables for a system at equilibrium is the time correlation
function,

C β α (t) = < β(t)α( 0 ) > (A.1)

where α(t) and β(t) are time-dependent values for the two variables given
as deviations from their means, and the angle brackets indicate ensemble
average. The extremum of C β α (t) is the limit value as t→0, C β α ( 0 ). Over
a sufficiently long time C β α (t) decays to zero.

Correlation functions are sometimes normalized as

Cβ α
N (t) =

< α( 0 )α( 0 ) > 1/2 < β( 0 )β( 0 ) > 1/2
< β(t)α( 0 ) >_ ____________________________ (A.2)

Correlations within sets of variables are described by a matrix of correlation
functions, C(t) = < α(t)αT ( 0 ) >, where α is a column vector of variables
and αT its transpose.

The time correlation function describes averaged properties of a system at
equilibrium.

(a) C( 0 ) describes fluctuations at equilibrium. For a single variable, the
zero-time autocorrelation function Cα α ( 0 ) is equal to the mean squared
deviation of the variable from its average value, equal to the variance for a
Gaussian distribution of values of the variable. For a set of two variables,
the off-diagonal elements of the zero-time correlation matrix, C β α ( 0 ), are
equal to the covariance for the variable pair. If C β α ( 0 ) = 0, there is no
correlation between the variables (they are statistically independent). The
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joint probabilities for values of correlated variables at equilibrium can be
calculated from the zero-time correlation matrix.

(b) C(t) describes relaxation of the fluctuations. For a single variable,
Cα α (t) defines a characteristic time (τα), under the often good
assumption that relaxation (decay) of a fluctuation back to the equilibrium
(time-average) value is a first order process. For two variables, C β α (t)
defines a characteristic time, τ β α , for the loss of correlation.

The time correlation function C(t), although it is determined by the behavior
of a system at equilibrium, contains information on the dynamics and
properties of similarly-constituted nonequilibrium systems. The connection
between equilibrium and nonequilibrium systems is given by the
fluctuation-dissipation theorem: variables of a nonequilibrium system not far
from equilibrium relax and respond on average in the same way as
fluctuations in the same variables relax on average in the equilibrium
system.

(a) C( 0 ) describes static response: the response of one variable after long
time to a constant perturbation of the same or another variable; the
response observed after the system perturbed from its original equilibrium
has reached its new equilibrium. For one variable, Cα α ( 0 ) = k B T / K,
where K is the force constant describing a region of the potential surface,
generally a well bottom, within which the correlation function was
measured. Thus C( 0 ) relates the response of a variable to a static external
force that was applied to the same or another variable and that perturbed
the system from equilibrium.

(b) C(t) describes dynamical properties of the nonequilibrium system: the
relaxation of a nonequilibrium system to equilibrium. Cα α (t) defines τα
for relaxation of a nonequilibrium state just as it does for relaxation of
equilibrium fluctuations. Cα α (t) also describes the opposite of relaxation
to equilibrium, the time response to an external force that displaces the
variable α and drives the system away from equilibrium. Interpretation of
C β α (t) is similar: it describes the time response of the variable β with
external force applied to displace the variable α.
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(c) The response may lag the force. The lag, due to friction and inertial
effects, is greater for high rate of change of a variable and is absent for the
zero-frequency response, C( 0 ), which reflects only the potential function.
Energy is dissipated when work is done by an external force. Dissipation
is related to the lag in response and to the contributions of friction and
inertial effects.

As an example of the correspondence between equilibrium and
nonequilibrium systems, consider a chemical reaction. Let α(t) be the
concentration of one of the two species in an isomerization equilibrium.
Then Cα α (t) is the time correlation function for concentration fluctuations
at equilibrium. The characteristic time for the relaxation of fluctuations
described by Cα α (t) in the equilibrium system is equal, by the fluctuation-
dissipation theorem, to the relaxation time for a system prepared to have a
nonequilibrium concentration of the α species. This relaxation time for the
nonequilibrium system is a simple function of the forward and reverse rate
constants for the isomerization reaction. Thus the rate constant for a
nonequilibrium process is directly related to the concentration fluctuations at
equilibrium and to C(t). Why is this important? The central point is the
correspondence between reaction rate and C(t). This is easy to make
plausible as done above. It can also be shown in other ways, such as by use
of the Mori-Zwanzig formalism. Once one knows that C(t) defines the rate
constant, effective molecular dynamics algorithms for equilibrium systems
can be used to compute C(t) and thus the reaction rate. The modeling of the
molecular dynamics gives a deep understanding of the microscopic events
that determine the rate constant and underlay the macroscopic process
described by the rate constant: friction; barrier and well shapes; collective
motions, especially of the environment (protein and solvent for an enzyme
active site); time scales and coupling to the environment; cross correlations
and dependence of the reaction rate on other variables; etc.
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CORRELATION -- TIME SCALE SEPARATION, RELAXATION,
CROSS CORRELATION, DYNAMIC AND STATIC RESPONSE.

We want to make general statements about the time dependence of C(t), the
mathematical form of the cross-correlation C β α (t), and the relation of the
cross-correlation characteristic time τ β α to the characteristic times of the
separate motions of the α and β variables. The intent is to understand
coupling between protein motions of the same or different time scale as it
applies to protein processes, such as enzyme rate processes.

A system at equilibrium but transiently in a fluctuant state relatively far from
equilibrium will evolve by relaxing back toward equilibrium (decay of the
fluctuation). For example, a fluctuant value for a coordinate of a system in a
potential well will evolve toward the value at the well bottom. Considered
within the framework of the Generalized Langevin equation, the
characteristic time for relaxation of some particular system variable is
determined by interactions (i) with other variables of the same set A and (ii)
with variables that are sensed only as part of the environment; the effects of
these interactions are described, respectively, by the factors iω̂ and K(t) of
the Generalized Langevin equation.

An external force, acting upon some variable to displace it from its
equilibrium value, elicits a response in the variable displaced and also in the
other variables of the set A. By the fluctuation-dissipation theorem, the time
course of this response is on average exactly that for relaxation of the
corresponding fluctuant quantity of the equilibrium system.

For some dynamical variable that relaxes and responds on a particular time
scale, we may expect there to be certain other variables that relax and
respond on approximately the same time scale, and there to be yet others
with dynamics on much faster or slower time scales. Considering, for
example,s a particular torsional libration of a protein that relaxes on the 0.1-
1 ps time scale, we would expect there to be other torsions relaxing and
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responding on the same time scale, with the hard degrees of freedom of bond
vibration, bond bending, etc., being on faster time scales, and on slower time
scales, flips between torsional minima, charge redistribution, cooperative
structural events, etc. Some of the motions, such as torsional libration and
bond vibration, are motions within wells of a high-dimensional potential-
energy surface; others, like flips between torsional minima, involve crossing
a barrier between potential-energy wells. The event of barrier crossing is
typically on the 0.1-1 ps time scale, with the slowness of a process such as
torsional flip, charge movement, etc., being due to the low probability of a
crossing event (a high barrier).

We can group dynamical variables as fast or slow according to time scale of
relaxation and response. If we pick a particular time-scale group, such as
torsional librations for a protein, and we observe the system on the time
scale of this group (0.1-1 ps), then we can call "fast" any variables relaxing
on a much shorter time scale (<0.1 ps), and "slow" those variables relaxing
on the observation time scale. It is proper as well as convenient to ignore,
for the present, variables with much longer characteristic times, because
these are invariant on the observation time scale. The fast variables, insofar
as they influence the slow, comprise the random force driving fluctuations of
slow variables about their average trajectories, the term f (t) of the
Generalized Langevin equation, and cause damping of the motion, the factor
K(t) or Γ( 0 ) of the Generalized Langevin equation.

For a particular process, such as catalysis of a reaction by some enzyme, one
can identify, at least in principle, a group of slow variables, the set A ( t ), that
fully describe the process. Different processes are described, of course, by
different sets A of slow variables.

If we specify some one slow dynamical variable β of the set A, say a
particular torsional libration of a protein, a time correlation function C(t)
describes its relaxation. The mathematical form of C(t) is a sum of
exponentials in the time:
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C(t) =
i = 1
Σ
n

R i e γ i t (D.1)

where the γ i are the poles (singularities) of the Laplace transform of C(t)
and the R i are the residues at the n poles. The γ i can be complex valued.
The real part of γ i if negative defines a relaxation on the time scale
τ i = 1/ Re(γ i ). There must be least one pole, corresponding to the slow
variable β, for which τ >> τ c, the correlation time of the random force (the
fast variables). If there are other poles corresponding to a value of τ >> τ c,
these represent other slow variables potentially coupled with the slow
variable β. Cross correlations C β α (t) as well as single-variable
autocorrelatons Cα α (t) have the mathematical form of Eq. (D.1). For a
particular set of slow variables A, every correlation function is described by
the same set of exponentials in the time, one exponential term for each
variable, with the summations differing in the coefficients R i of Eq. (D.1).
We want to understand the rules for selecting which exponential term
dominates for a particular correlation function. The following section is a
summary of some relevant points.
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COMMENTS -- TIME SCALE SEPARATION, RELAXATION, CROSS
CORRELATION, DYNAMIC AND STATIC RESPONSE.

(1) An analysis based on Eq. (D.1) can be used as a guide to understanding
the structure of time correlation functions, particularly two-variable cross-
correlation functions, C β α (t).

(a) The correlation function is a sum of exponentials in the time.

(b) Each exponential term contributes to the time dependence of the
correlation either as a relaxation (a decay toward zero), or as a divergence
if the exponent is positive.

(c) If the exponent has an imaginary part, the term has a periodic factor
(an oscillation superimposed on the relaxation).

(d) The number of terms is less than or equal to the number of slow
variables that are coupled. Two slow variables, such as a coordinate and a
velocity, may be associated with even an apparently simple, single
process.

(e) The relative weight of each term and its relaxation time τ are functions
of parameters of all the coupled slow variables. However, one variable or
a small number of variables can dominate, and the sum of exponentials
can reduce to one or two terms, or equivalently, the relaxation can be
determined by one or a few variables of similar τ.

(2) Protein motions cover a range of time scales. It is important to consider
coupling between processes of widely different τ. For the correlation
function C β α (t), let β be the slower process and α the faster.

(a) For wide time-scale separation, the relaxation of C β α will be
controlled by τ β , the slower characteristic time. If observation is on the
time scale of the faster α process, then no relaxation of the β variable or of
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C β α will be seen.

(b) This can be stated also in terms of response of the β variable to
displacement of the α variable by an external force. If displacement is
carried out on the α process time scale, there can be no response of the β
variable. If displacement of the α variable is carried out slowly and on the
β process time scale, the β variable will respond.

(c) If the external force is applied over a very long time, the β variable
will respond fully. This long-time response is the static, or equilibrium,
response. The size of the static response is proportional to C β α ( 0 ), the
covariance of the equilibrium fluctuations.

(d) The symmetries of the generalized Langevin equation require that
C β α (t) = ±Cα β (t), with the sign negative if the α and β processes differ
in time reversal symmetry.

(e) Consequently, τ β α = τα β . The α variable when driven by
displacement of the β variable responds on the time scale of the β
variable. This can come as no surprise, since the β variable cannot be
displaced in times shorter than τ β . Because τα << τβ , the faster α
variable shows instantaneous response (static or equilibrium response) to
change in the β variable.

(3) The statements of paragraph (2) have several consequences with regard
to analysis of an enzyme rate process.

(a) A slow enzyme process cannot be coupled to a fast process on the time
scale of the fast process. For example, a pK shift cannot be coupled to
barrier crossing, the time scale of the latter being 0.1-1 ps and of the
former, µs or longer.

(b) For a long-lifetime ES complex, there is the possibility for static
coupling (correlation) among all processes with characteristic times
shorter than the lifetime of the ES complex.
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(c) During barrier crossing, those variables with characteristic times
greater than that of barrier crossing maintain the quasi-equilibrium values
of the ES complex from which barrier crossing was initiated. The
distribution of these values is described by the static correlation function
C β α ( 0 ) for those variables with characteristic time less than the lifetime
of the ES complex.

(d) The nature of the distribution of quasi-equilibrium correlations carried
into the transition state is a factor in determining height of the barrier.
This contribution should be viewed as an equilibrium solvent effect. Such
correlations are almost certainly important for enzyme catalysis: consider
the distribution of protons among charged groups in the transition state for
an enzyme RDS to which acid-base catalysis contributes.


