
NOTES ON ENTROPY

THERMODYNAMICS

Three laws lead to a vast array of relationships between measurable
properties.

This construct is one of the great achievements of the human intellect. It is
even useful.

In thermodynamics:
NO MICROSCOPIC MODELS and NO MOLECULES.

The Three Laws:

dE = dQ − dW First Law

dS ≥
T

dQ_ ___ Second Law

S(B) − S(A) ≥
A
∫
B

T
dQ_ ___

Clausius: There exists no thermodynamic transformation whose sole effect
is to extract a quantity of heat from a colder reservoir and to deliver it
to a hotter reservoir.

S(T) =
0
∫
T

T
dQ_ ___ =

0
∫
T

T
C(T)_ ____ dT Third Law

The entropy of a system at absolute zero is a universal constant, which may
be taken to be zero.

Obviously, entropy and the Second Law have to do solely with heat flow and
temperature.

The Carnot cycle, heat pumps, steam engines, etc., are often used to develop
the concept of S as a state function.

The thermodynamic temperature scale follows from the Second Law. Note
that dS / dE = 1/ T, for a system at thermodynamic equilibrium.



PHYSICAL PICTURE, OR LACK THEREOF, FOR THE
THERMODYNAMIC ENTROPY

One has an intuitive or early-learned feeling for many of the functions and
variables found in thermodynamics: e.g., E, Q, W, P, V.

We do not have this for the entropy.

Entropy is a thermodynamic variable, to be distinguished from mechanical
variables such as E,P,V, etc.

One cannot make a simple measurement of the entropy or of entropy change,
as one can for other principal variables.

The entropy can be evaluated for a substance by use of the Second and Third
Laws, i.e., integration of the heat capacity, determined by calorimetry, with
respect to logT, from near absolute zero to temperature T, taking into
account the entropy of any phase transitions.

Although important, this analysis does not help develop a physical picture of
the entropy.

Entropy change is commonly evaluated for a process as:

∆S =
T
∆H_ ___ −

T
∆G_ ___

This relationship shows that the entropy is that part of the energy that is
unavailable for doing work. If the path between equilibrium states is not
reversible, then ∆S contains also a contribution from the irreversibility. In
both senses, S is a measure of our ignorance about the system.

Again, these statements, although important, do not help one develop a gut-
level understanding of entropy.



INFERENCE FROM MEASUREMENT OF THE ENTROPY OR
ENTROPY CHANGE

To the extent that one wants a set of thermodynamic measurements to allow
inference about the nature of a process at the microscopic level, definitions
of the thermodynamic entropy are particularly unsatisfying.

Note that by assumption, thermodynamics does not allow inference about
microscopic properties. Thermodynamics is model independent.

Nevertheless, scientists do insist upon making inferences. Sometimes, with
justification, in which cases typically through use of extra-thermodynamic
information: structure; analogy with a more completely analyzed system;
etc.

Statements based upon measurement of the energy (∆H) are often sensible.
E.g., if the heat of ionization is measured for a protein process and found to
be near zero, after correction for buffer ionization, etc., then a conclusion
that a carboxylic side-chain group was titrated is not unreasonable.

Free energy measurements seem to show plausible patterns that help in
understanding equilibria and even reaction rates, e.g., the linear free-energy
relationships of physical organic chemistry. In this connection, a free energy
change measures work done by or on the system in an isothermal reversible
process.

So what should one do with a value or set of values of ∆S?

Good advice, is to do nothing with them.

The obvious problem for interpretation of ∆S is, as we have seen,
thermodynamics does not give a physical picture for S that leads to simple
interpretation in terms of a microscopic model.

Thus one relies on statistical mechanics for an understanding of S, which is
taken to be that S measures disorder and ∆S measures changes in order.

This is not incorrect.

But, one must carefully define what one means by order, to be sure it fits the
requirement of the statistical-physical definition of the entropy.



Not often is this done well.

Thus we give the advice, that one, when faced with an overwhelming desire
to interpret values of ∆S, should restrain these base impulses, shut down the
computer, and go for a beer.



STATISTICAL MECHANICAL DEFINITION OF THE ENTROPY

Statistical mechanics is based upon a set of mechanical laws, classical
(Newtonian) or quantum, a fundamental hypothesis of equal a priori
probabilities (and random phases), and a formalism for statistical averaging.

Like thermodynamics, it is a towering achievement of human intellect.

Unlike thermodynamics, the development of which was driven by the need
to understand steam engines, statistical mechanics arose as the intellectual
(curiosity-driven) product of two minds, Boltzmann’s and Gibbs’, working
essentially independently in the latter part of the 19th century.

Also unlike thermodynamics, statistical mechanics is absolutely model-
based. Atoms and molecules and their motions are at its heart.

Connection between the statistical-mechanical model and thermodynamics is
made by finding statistical-mechanical functions that are equivalent to a
particular thermodynamic variable.

For example, the thermodynamic energy E is identified, not unreasonably, as
the expectation value for the statistical mechanical energy.

The definition of S is somewhat less intuitive. In classical theory, the
normalized probability density ρ(Γ) will be very sharply peaked in some
region of the phase space Γ. We define ∆ Γ as the volume of phase space
about the maximum ρmax such that ρmax

.∆ Γ = 1 . ∆ Γ is a measure of the
spread of the probability density about the maximum.

We identify the entropy, within an additive constant, as

S = k log∆ Γ (1)

which can be shown equivalent to

S = − k < logρ > (2)

= − k
Γ
∫ dΓ ρlogρ (3)

Similarly, for quantum systems, where ∆ Γ corresponds to the number of
quantum states in the interval of energy corresponding to the mean energy
fluctuation of the system about the most probable value,

S = − k Trρ̂logρ̂ (4)



The entropy also may be written as an explicit average over quantum states

S = − k
i
Σ P i logP i (5)

where for the canonical ensemble

P i =
Q

e−E i / kT
_ ______

with the partition function

Q =
i
Σ e−E i / kT

where the E i are the energy eigenvalues of the quantum states of the system.
Any particular member of the ensemble will be characterized by one of the
energies, E i , with the probability e−E i / kT .

We obtain the necrological inscription of Boltzmann

S = k logW (6)

where W is the number of accessible quantum states of the system (∆ Γ), by
evaluation of eq. (5) for the microcanonical ensemble, which has equal
probabilities P i .

For molecules such as CO 2, CH 4, etc., that can be studied as ideal gasses,
the statistical-mechanical entropy can be calculated with Eq. 5 and
experimental values of the vibrational energies E i , determined from IR and
Raman spectroscopic measurements (normal mode frequencies). These
spectroscopic values agree with and can be more accurate than
thermodynamic values from calorimetric determinations of the heat capacity.



IMPLICATIONS OF THE STATISTICAL MECHANICAL DEFINITION
OF THE ENTROPY

Eq. 1 and Eq. 6, respectively, relate the entropy to the volume of phase space
and the number of quantum states accessible to the system (of significant
probability for the system).

In its relation to the spread of the probability density, the entropy is a
measure of the imprecision of our knowledge of the system.

Presumably Eq. 1 and Eq. 6 are why some people interpret increase in the
thermodynamic entropy as increase in disorder for a system. Why others
choose to identify entropy with randomness is less clear.

The entropy is associated with reduced complexity in the description of a
system.

At the microscopic level, a system is described classically in great and
unknowable detail by 6N variables (coordinates and momenta for the N
particles comprising the system). Statistical averaging, over the ensemble or
over time, produces a description with the vastly smaller number of
variables of classical thermodynamics. The loss of detail in the description
appears in the entropy, i.e., the entropy is a measure of the imprecision of
our knowledge of the system - of our ignorance about its microscopic
behavior.

Entropy is a statistical quantity.

Some variables, such as the mechanical variables E,P, andV, are defined for
a particular arrangement of particles (a particular member of an ensemble, a
particular time along a trajectory). Average (expectation) values of E, etc.,
are defined by statistical averaging over the ensemble.

The variable S, in contrast, is defined only for the ensemble, as a statistically
averaged quantity.

The special and difficult character of the variables F and S derives from their
dependence on the logarithm of the partition function, logQ. In contrast,



mechanical variables such as E have expectation values that are simple
weighted averages. This difference has implications for understanding the
response of F or S to change in system conditions. It also explains the
difficulty of evaulating F or S, compared with E, from molecular dynamic
simulations. The following paragraphs are an attempt to clarify these
statements.

From Eq. 5, inserting the canonical ensemble expression for P i ,

S =
T
1_ _

i
ΣE i e−E i / kT / Q + klogQ (7)

Agreement with the classical thermodynamic expression

S =
T
E_ _ −

T
F_ _ (8)

is found for

E =
i
ΣE i e−E i / kT / Q (9)

and

F = − kTlogQ (10)

The partition function Q is the normalization factor for the probability
density in the averaging for E (Eq. 9). With Eq. 10, we can write Q as a
function of F, and with Eq. 9,

E =
i
ΣE i e (F − E i )/ kT (11)

Also, from Eq. 9 and the definition of Q,

E = −
Q
k_ __

∂1/ T
∂Q_ ____ = kT 2

∂T
∂logQ_ _____ (12)

Eq. 9-12 show that F and E are qualitatively different types of average
quantities. The expectation value for the mechanical variable E is a simple
Boltzmann-weighted average (Eq. 9). F is not a simple average (Eq. 10);
rather, it is the logarithm of the sum of the weighting factors used in the
averaging for the energy E. Eq. 11 shows that F is a normalizing factor,
equivalent to Q. E depends on the shape of the function logQ (the
temperature derivative, Eq. 12), and not explicitly on logQ, as does F.
Change in the weights e E i / kt affects both numerator and denominator terms
of Eq. 9, leading through compensation to a reduced effect on the
expectation value E. Change in the weights affects the free energy F without
compensation (Eq. 10).



Clearly, change in a system variable can affect F or S differently than E. For
example, if in response to some small change in a system variable, a
hindered rotation becomes free (e.g., 180o flip of an aromatic ring), the
partition function would be increased (for flip of an aromatic ring, Q would
be doubled, with − kTlog 2 change in F) with essentially no change in the
expectation value for E.

Molecular dynamics simulations sample preferentially states with high
probability, according to the Boltzmann weighting e E i / kt . Thus a relative
short simulation can give a trajectory average close to the true ensemble
average for the energy, provided states not sampled, and having significant
but small weights, are distributed sufficiently randomly about the maximum
term so as to compensate. However, such unsampled states result in
uncompensated reduction of the value of the sum Q, and evaluation of F
from an MD trajectory by use of Eq. 10 is difficult. Values of ∆F can be
obtained by thermodynamic integration, a relatively complex procedure.



COMMENT BY TOLMAN (1955)
R. C. Tolman, "The Principles of Statistical Mechanics", p560ff, Oxford
(1955). [The first edition was published in 1938.]

131. Remarks on the statistical explanation of thermodynamics.

We may now conclude this present chapter by making a few remarks
concerning the nature of the explanation which the methods of statistical
mechanics have provided for the principles of thermodynamics.

The fundamental idea in this explanation lies in regarding the
thermodynamic behaviour of a single system of interest as equivalent to the
mechanical behaviour which would be exhibited on the average by a suitably
chosen ensemble of systems of similar structure. [Rest of paragraph deleted.]

In carrying out the implications of this fundamental idea, we have found
it necessary to correlate the thermodynamic variables ordinarily used to
specify the condition of a thermodynamic system with mechanical quantities
applying to the corresponding representative ensemble. In the case of the
external coordinates describing a thermodynamic system, we have found it
possible -- paying due regard to the new requirements imposed by the
quantum mechanics -- to give all the systems in the ensemble the same
values for their external coordinates as those of the system to be represented.
In the case of purely mechanical quantities, such as the energy or external
forces exhibited by a thermodynamic system, we have found it possible to
make a correlation with the average values of these quantities in the
representative ensemble. Here it may be remarked that the mean proves the
most desirable average to take, and that inevitable quantum mechanical as
well as deliberate experimental limitations on the accuracy of our
observational information may play a role in the necessity for representing
such quantities by their mean values. In the case of the essentially
thermodynamic variables, entropy and temperature, considerable
investigation was necessary to validate the choice of statistical correlates.
[Italics added.]

In the case of entropy, except for a constant factor needed to allow for
choice of units, it was found satisfactory to correlate this thermodynamic

quantity with the negative of the quantity H
_ __ _

for the ensemble used to
represent the system of interest.

S <--> − k H
_ __ _

= − k
n
ΣP n logP n (131.1)

[Equation moved from below to this place in text.]

Several remarks may be made in this connexion.



In the first place, it is to be noted, as has been emphasized in connexion
with our derivation of the H-theorem, that the ensemble which we choose to
represent a mechanical system of interest is determined by the observations

we have made on the condition of that system. Thus also the value of H
_ __ _

will
be determined by the nature of our knowledge of the condition of the system.

Since the value of H
_ __ _

is lower the less exactly the quantum mechanical state
of the system is specified, this provides the reason for the statement
sometimes made that the entropy of a system is a measure of the degree of
our ignorance as to its condition. From a precise point of view, however, it
seems more clarifying to emphasize that the entropy can be regarded as a
quantity which is thermodynamically defined with the help of its relation to
heat and temperature given by

∆S ≥ ∫
T
δQ_ ___ (130.1)

[eq. 130.1, Second Law of thermodynamics, moved to this place in text],

and statistically interpreted with the help of the analogous relation

− ∆H
_ __ _

≥ ∫
θ
δQ

_ __ _

_ ___ (130.4)

[eq. 130.4 moved to this place in text]

between the mechanical quantities H
_ __ _

, Q
_ __ _

and θ.

[Two paragraphs deleted.]

As a final point concerning the correlation between the entropy S and the

statistical mechanical quantity H
_ __ _

, as given by (131.1), it is of interest to
consider the special case of a system which we regard as being with equal
probability in one or another of a group of W eigenstates between which we
do not distinguish on the basis of our macroscopic measurements. It will be
seen that the relation (131.1) would then assume the form

S <--> k logW (131.2)

This has the form of the relation between entropy and probability considered
by Boltzmann and Planck, and the quantity W is sometimes spoken of as the
thermodynamic probability. It is evident, however, that (131.2) is best
regarded merely as a special case of the generally satisfactory and
understandable expression for the entropy given by (131.1). [Italics added.]

We may now turn to the correlation of the temperature T with .....



TEXTS: TREATMENT OF ENTROPY AND DISORDER

From Biochemistry texts:

Lehninger, "Principles of Biochemistry", 3rd edition, 2000:
(page 72) "The randomness of the components of a chemical
system is expressed as entropy, S."

Garrett and Grisham, "Biochemistry", 2nd edition, 1999:
(page 60) "... concept of entropy, which is a measure of disorder
and randomness in the system (or the surroundings)."

Voet, Voet and Pratt, "Fundamentals of Biochemistry", 1999:
(page 15) "The degree of randomness of a system is indicated
by its entropy..."

Examples from Chemistry and Physics texts can be summarized as:

Statistical Physics texts do not relate entropy to disorder.

Chemistry texts are cautious if they do this.

EXAMPLES OF INTERPRETATIONS OF ENTROPY CHANGE

Crystals

Helix-coil transition

Nonpolar solutes in aqueous solution

Cells and organisms



WEB REFERENCES:

"Entropy" gets 532,000 Web hits (on 4/6/02; 145000 hits last year) on
Google; for amusement, try "entropy" and Google Images (7,830 hits;
4/6/02); for information, try "entropy" and Google Groups (232,000 hits,
4/6/02); but for good, basically sensible links, try "entropy" and Google
Directory (633 hits, 4/6/02).

Perhaps for starters try one of the following:
Entropy on the World Wide Web

http://www.math.psu.edu/gunesch/entropy.html
ENTROPY and the Second Law of Thermodynamics!

http://www.2ndlaw.com/
Principia Cybernetica Web, Entropy and the Laws of
Thermodynamics

http://pespmc1.vub.ac.be/ENTRTHER.HTML
Note on Entropy, Disorder and Disorganization

http://www.endeav.org/evolut/text/denbig1/denbig1e.htm

Other definitions of entropy, besides thermodynamic and statistical.

Wacky stuff.


